Soft matter and Biology

Some classical examples and illustrations

T. Risler Université Pierre et Marie Curie Paris VI Institut Curie, Paris

The cell cytoskeleton

Source: J. V. Small 2013–2014 http://cellix.imba.oeaw.ac.at/cytoskeleton

The cell cytoskeleton

Fibroblast Cytoskeleton Source: J. V. Small 2013–2014 http://cellix.imba.oeaw.ac.at/cytoskeleton

Source: Josef Käs ; https://www.uni-leipzig.de

Cytoskeleton and cell motility

Actin

Source: Vic Small http://cellix.imba.oeaw.ac.at/cytoskeleton

Microtubules

Green: Microtubules ; Blue: Chromosomes ; Pink: Kinetochores.

https://fr.wikipedia.org/wiki/Kinétochore

T. Risler, *Cytoskeleton and Cell Motility*, in **Encyclopedia of Complexity and System Science**, Springer NY (2009)

T. Risler, *Cytoskeleton and Cell Motility*, in **Encyclopedia of Complexity and System Science**, Springer NY (2009)

Osmotic pressure

(a) Cells in dilute salt solution

(c) Cells in concentrated salt solution

http://chemwiki.ucdavis.edu

Source: Wikipedia

Depletion interaction and microtubule bundles

Depletion forces from the polymer PEG induces spontaneous bundling of Microtubule filaments.

Source: S. DeCamp http://www.stephenjdecamp.com

Depletion interaction and active nematics

Scale bars: 50 µm

Sanchez et al., Nature (2012) ; DeCamp et al., Nat. Mat. (2015)

Nematic topological defects and cytoskeleton patterns

Nematic Defects

-1/2 Defect Schematic

+1/2 Defect Schematic

+1/2 Defect in the microtubule

-1/2 Defect in the microtubule

http://www.stephenjdecamp.com

Nedelec et al., Nature (1997)

Numerical simulations

DeCamp et al., Nat. Mat. (2015)

t = 8t

Example of active nematics

Voituriez et al., Europhys. Lett. (2005)

Voituriez et al., PRL (2006)

General framework of active gels

Kruse et al., EPJE (2005) Jülicher et al., Phys. Rep. (2007) Risler, Springer Encyclopedia (2009) Sound detection out of equilibrium

The Hopf bifurcation revisited

F. Jülicher, J. Prost Institut Curie, Paris

Max-Planck Institute, Dresden

Auditory performances

Frequency range:	20 Hz - 20 kHz	(Human)
	Up to 100 kHz	(Bats; Wales)

Frequency discrimination: $\Delta f/f \approx 0.2 - 0.5$ %

 Dynamic range:
 Stimulus: 20 μPa - 20 Pa (1.000.000 fold)

 Response: < 1 nm - 10s nm (100 fold)</td>

Threshold:Thermal-noise limitedVibrations < 1 nm</td>

Nonlinear sensitivity ; Active amplification

Hearing and activity

Spontaneous Oto-Acoustic Emissions (SOAE)

Manley & Köppel, Cur. Op. Neurobiol. (1998)

The human ear Cupula Auricle Stapes Vestibular nerve Incus SEMICIRCULAR CANAL Malleus Cochlear nerve Cochlea **Tectorial membrane** Round window Tympanum Middle External auditory meatus Eustachian tube ear cavity Otolithic membrane anana lanan sana sana Basilar membrane COCHLEA SACCULUS (R. Pujol, http://www.iurc.montp.inserm.fr/cric/audition)

Hudspeth, Nature (1989) (review)

The sensory cells: the hair Cells

A.J. Hudspeth's Laboratory

Mechano-transduction

Holt & Corey, *PNAS* (2000)

Corey & Hudspeth, J. Neurosci. (1983) Howard & Hudspeth, Neuron (1988)

Ionic fluxes

A.J. Hudspeth's Laboratory Yamoah *et al.*, J. Neurosci. (1998)

Hudspeth, Science (1985)

Ribbon synapse

Jacobs & Hudspeth, Cold Spring Harbor Symposia (1990)

200 nm

The degrees of freedom

P. Gillespie

A.J. Hudspeth

One or many degrees of freedom ?

Double-laser interferometer

Kozlov et al., J. Physiol. (2012)

FEM model

J. Baumgart

Observables

Drag

Coherency

$$\begin{bmatrix} x_{ii} & x_{ij} \\ x_{ji} & x_{jj} \end{bmatrix} \begin{bmatrix} F_i \\ F_j \end{bmatrix} = \begin{bmatrix} u_i \\ u_j \end{bmatrix}$$
$$\mathbf{G} = 2 \, k_{\mathrm{B}} \, T \, \frac{\mathrm{Im} \, (\chi(\omega))}{\omega}$$
$$\gamma_{ii} = \frac{\mathbf{G}_{ij}}{\omega}$$

$$\gamma_{ij} = \frac{\mathbf{G}_{ij}}{\sqrt{\mathbf{G}_{ii} \, \mathbf{G}_{jj}}}$$

FEM results

Kozlov et al., Nature 474, 376 (2011)

"Wild-type" cells

Kozlov et al., Nat. Neurosci. (2007)

Stochastic model

Hair bundle of the bullfrog's sacculus

- 61 stereocilia in hexagonal arrangement
- ▶ 122 degrees of freedom (finite element model ≈ 350 000)

Formulation of stochastic model Passive system: $D_{i,j} \frac{\partial x_j}{\partial t} + K_{i,j} x_j = f_i$

Comparison FEM - Analytic

- Lubrication approximation
- Very small axial flow

Numerical integration scheme

Formulation of stochastic model Passive system: $D_{i,j} \frac{\partial x_j}{\partial t} + K_{i,j} x_j = f_i$ Euler time integration: $x_i^{t+\Delta t} = \left(x_i - \Delta t D_{i,j}^{-1} K_{j,k} x_k + 2\sqrt{k_B T \Delta t} G_{i,j} \eta_j\right)$ $-k_{B} T \Delta t D_{j,i}^{-1} \frac{\partial D_{j,l}}{\partial x_{L}} D_{l,k}^{-1} \Big)^{t}$

- D: Damping matrix Δt : Time step
- K: Stiffness matrix
- x: Displacement vector
- f: Force vector
- t: Time

- k_B : Boltzmann constant
- T: Temperature
- G: $G_{k,i}G_{j,i} = D_{k,i}^{-1}$ and $G_{j,i} = G_{i,j}$
- η : Noise with zero mean and variance of 1/2

Relative importance of the drift term

- Letting evolve for 5 times the largest eigenvalue (memory < 1%)

- Time step: gaps between adj. ster. vary by less than 5%

Stochastic model results

Kozlov *et al.*, (2011)

Splaying distances

Kozlov et al., Nature (2011)

Check of the FEM model

Splaying distances ≅ 1 nm or less

Relative phases

Kozlov et al., J. Physiol. (2012)

Experiments

Howard, Hudspeth, *PNAS* (1987)

Fluctuation spectrum

$$\tilde{S}(\omega) = \langle X(\omega)X(-\omega) \rangle$$

Spontaneous oscillations with a preferred mean frequency

Martin et al., PNAS (2001)

Activity and fluctuation-dissipation

Effective temperature

The hair bundle: a critical oscillator

Martin, Hudspeth, PNAS (2001)

$$\partial_t Z \simeq -(r+i\omega_0)Z - (u+iu_a)|Z|^2Z + f$$

$$X \cong \operatorname{Re}(Z)$$
$$f \cong \Lambda^{-1} e^{i\theta} F$$

Bifurcation point

$$r = 0$$
; $\omega = \omega_0$

$$\frac{|X|}{|F|} \propto |F|^{-2/3}$$

Choe et al., *PNAS* (1998) **Camalet et al.,** *PNAS* (2000) **Ospeck et al.,** *Biophys. J.* (2001)
The cochlea: an ensemble of critical oscillators?

Martin, Hudspeth, PNAS (2001)

Ruggero et al., J. Acoust. Soc. Am. (1997)

Fluctuations and spontaneous oscillations

Noisy oscillator

 $C(t) = \left\langle X(0)X(t) \right\rangle$

Synchronization Transition or Hopf Bifurcation of Coupled Oscillators

C(x,t)

Field theory for coupled oscillators

$$\partial_t Z = -(r + i\omega_0)Z - (u + iu_a)|Z|^2 Z + (c + ic_a)\Delta_d Z + \Lambda^{-1}e^{i\theta}F + \eta$$

CGLE: Aranson, Kramer, Rev. Mod. Phys. (2002)

$$\langle \eta(\mathbf{x},t) \rangle = 0 \langle \eta(\mathbf{x},t)\eta(\mathbf{x}',t') \rangle = 0 \langle \eta(\mathbf{x},t)\eta^*(\mathbf{x}',t') \rangle = 4D\delta(t-t')\delta^d(\mathbf{x}-\mathbf{x}')$$

Phase invariance

$$Z \to Z \exp(i\varphi)$$

A special case

$$\partial_t Z = -(r + i\omega_0)Z - (u + i\omega_a)|Z|^2 Z + (c + i\alpha_a)\Delta_d Z + \Lambda^{-1}e^{i\theta}F + \eta$$

Exact mapping to the XY model

Risler, Prost, Jülicher, *PRL* (2004) & *PRE* (2005)

Perturbation theory

Elementary diagrams

$$(Z = \psi_1 + i\psi_2)$$

$$\psi_{\alpha} = \alpha - C_{\alpha\beta}^{0} = \left\langle \psi_{\alpha} \psi_{\beta} \right\rangle_{0} = \alpha - \beta$$

$$\widetilde{\psi}_{\alpha} = \alpha - \chi_{\alpha\beta}^{0} = \left\langle \psi_{\alpha} \widetilde{\psi}_{\beta} \right\rangle_{0} = \alpha - \eta$$

$$-\left(u\delta_{\alpha\beta}+u_{a}\varepsilon_{\alpha\beta}\right)\delta_{\gamma\sigma}=\overset{\alpha}{\overset{\mathbf{z}_{\alpha\beta}}{\swarrow}}_{\gamma}\overset{\beta}{\overset{\beta}{}}_{\sigma}$$

Feynman diagrams

First order flow equations

Fixed points
$$r^*, u^* \propto \varepsilon$$
 ; $u_a^* \propto \varepsilon c_a$; c_a

Renormalization flow diagram

One-loop order

Two-loop order

Risler, Prost, Jülicher, PRL (2004) & PRE (2005)

Results

Fixed point Dynamical XY model: Equilibrium fixed point!

$$\cos\theta_{\rm eff} \ \chi_{11}^{"} + \sin\theta_{\rm eff} \ \chi_{12}^{"} = \frac{1}{2\Lambda_{\rm eff}} \left(\omega \ C_{11} + i\omega_0^{\rm eff} \ C_{12} \right)$$

Response function

Risler, Prost, Jülicher, PRE 72, 016130 (2005)

Risler, Prost, Jülicher, PRL (2004) & PRE (2005)

Numerical verification

Wood, Broeck, Kawai, Lindenberg, *PRL* 96, 145701 (2006) *PRE* 74, 031113 (2006) Summary

Synchronization Transition

Hopf bifurcation of coupled oscillators: An out-of-equilibrium phase transition

Renormalization group and flow

New universal properties

Real Systems?

P. Gillespie

http://www.ux.his.no/~ruoff/BZ_Phenomenology.html

Acknowledgements

F. Jülicher

A. Kozlov

J. Baumgart

J. Prost

A. J. Hudspeth

Morphological instabilities in tissues

A hydrodynamic instability

M. Basan, J. Prost & J.-F. Joanny ETH, Zürick Institut Curie, Paris

Epithelia and carcinoma

Epithelia constitute the most common tissue type throughout the body

Over 80% of human tumors originate from epithelia

Mutlilayred, stratified epithelium

Free surface

Basement membrane

Epithelial undulations

Epithelial instability

Basan et al., PRL (2011)

Risler and Basan, New J. Phys. (2013)

Relaxation and rheology

Foty et al., Development (1996) Forgacs et al., Biophys. J. (1998)

Guevorkian *et al.*, *Phys. Rev. Lett.* (2010) *PNAS* (2011)

Elastic modulus	$E \simeq 10^2 - 10^4 \text{ Pa}$	
Viscosity	$\eta \simeq 10^3 - 10^5 \mathrm{Pa} \cdot \mathrm{s}$	
Relaxation time	$ au \simeq 10 \ { m s} - 10 \ { m mn}$	
	$\tau \simeq \text{hours} \qquad \stackrel{\mathbf{M}}{\underset{Pl}{\overset{Pl}{P}}{\overset{Pl}{}}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{\overset{Pl}{}}}{\overset{Pl}{\overset{P}}{\overset{P}}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}}{\overset{P}}{\overset{P}}{\overset{P}}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}{\overset{P}}}}}}}}$	armottant <i>et al.</i> , VAS (2009)

Soft-matter models for tissues

Gonzalez-Rodriguez *et al.*, *Science* (2012)

Surface tension

$$\frac{F_{\rm eq}}{\pi R_3^2} = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Foty et al., Development (1996) M. Steinberg et al.

Constitutive equations

Epithelium: Incompressible viscous medium with material production

$$\partial_{\alpha} v_{\alpha} = k_{\rm d} - k_{\rm a}$$

 $\partial_{\alpha}\sigma_{\alpha\beta} = 0$

$$\sigma_{\alpha\beta} + P\delta_{\alpha\beta} = \eta \left(\partial_{\alpha}v_{\beta} + \partial_{\beta}v_{\alpha}\right)$$

Connective tissue (stroma): Standard viscoelastic medium

 $\partial_{\alpha} v_{\alpha}^{s} = 0 \qquad \partial_{\alpha} \sigma_{\alpha\beta}^{s} = 0$ $(\tau \partial_{t} + 1) \left(\sigma_{\alpha\beta}^{s} + P^{s} \delta_{\alpha\beta} \right) = \eta^{s} \left(\partial_{\alpha} v_{\beta}^{s} + \partial_{\beta} v_{\alpha}^{s} \right)$

Epithelial source term

Epithelium: Incompressible viscous medium with material production

$$\partial_{\alpha} v_{\alpha} = k_{\rm d} - k_{\rm a}$$

Material production

$$k_{\rm p} = k \exp\left(-z/l\right) - k_0$$
$$v_{z|z=H}^0 = \int_0^H k_{\rm p}(z) dz = 0$$

Boundary conditions

Upper surface of the epithelium

Free tangential stress

 $\sigma_{\rm nt} = 0$

Normal stress: Laplace's law

$$\sigma_{\rm nn} = \gamma_{\rm a} \, \delta H^{\prime\prime}$$

Opposite side Hard-wall kinematic condition

 $v_{\alpha}^{\mathrm{s}} = 0$

Interface

Normal stress: Laplace's law

Tangential stress: Friction term

$$\sigma_{\rm nn}^{\rm s} = \sigma_{\rm nn} + \gamma_{\rm i} \, \delta h^{\prime\prime}$$

$$\sigma_{\rm nt}^{\rm s} = \sigma_{\rm nt} = \xi (v_{\rm t} - v_{\rm t}^{\rm s})$$

Modes: elastic connective tissue

k

l

Rate of cell division

Thickness of dividing region

Modes: viscous connective tissue

Modes: viscous connective tissue

Coupling to nutrient diffusion

$$k_{\rm d} - k_{\rm a} = \kappa_1 \rho - \kappa_0$$

$$\partial_t \rho = D \nabla^2 \rho - c \rho$$
$$\partial_t \rho^{\rm s} = D^{\rm s} \nabla^2 \rho^{\rm s}$$

Risler and Basan, New J. Phys. (2013)

Boundary conditions

Distance *d* from the interface

$$\rho^{\rm s} = \bar{\rho}_0$$

$$-D\partial_{\perp}\rho = k_{\text{off}}\rho$$

Comparison of the two models

Fit the cellproduction function

(1)
$$k_{\rm d} - k_{\rm a} = \kappa_1 \rho - \kappa_0$$

 $\partial_t \rho = D \nabla^2 \rho - c \rho$
 $\partial_t \rho_{\rm s} = D_{\rm s} \nabla^2 \rho_{\rm s}$

(2)
$$k_{\rm d} - k_{\rm a} = k \exp(-z/l) - k_0$$

New large-scale instability peak

--- Without coupling to diffusion

Instabilities in crystal growth

www.its.caltech.edu/~atomic/ snowcrystals

Mullins-Sekerka type peak

www.its.caltech.edu/~atomic/ snowcrystals

$$D^{s} = 2.10^{-11} \text{ m}^{2} \cdot \text{s}^{-1}$$
$$D^{s} = 2.10^{-10} \text{ m}^{2} \cdot \text{s}^{-1}$$
$$D^{s} = 2.10^{-9} \text{ m}^{2} \cdot \text{s}^{-1}$$

Risler and Basan, New J. Phys. (2013)

Epithelial undulations

http://en.wikipedia.org/wiki/Cervical_dysplasia GNU Free Documentation License, Version 1.2

Basan *et al.*, *PRL* (2011) Risler and Basan, *New J. Phys.* (2013)

M. Basan J.-F. Joanny J. Prost

Review: Risler, New J. Phys. (2015)

Tissue alone with fluctuations

Homeostatic pressure and density Surface fluctuations Effective temperature

M. Basan, A. Peilloux, J.-F. Joanny & J. Prost ETH, Zürick Université Paris Diderot Paris VII Institut Curie, Paris

Epithelial undulations

http://en.wikipedia.org/wiki/ Cervical_dysplasia

Regulated pressure of tissue growth

Homeostatic pressure $P_{\rm h}$

Basan *et al.*, *HFSP J.* (2009)

Regulated pressure of tissue growth

Homeostatic pressure $P_{\rm h}$

Basan et al., HFSP J. (2009)

Pressure regulation of tissue growth

Spheroids in an agarose gel

Helmlinger et al., Nature Biotech. (1997)

Mechanical feedback in development

B. Shraiman, PNAS (2005)

Experiments

Osmotic stress exerted by Dextran

F. Montel, M. Delarue. G. Capello, L. Malaquin, D. Vignjevic, et al.

Montel, Delarue, Elgeti et al., Phys. Rev. Lett. (2011) New J. Phys. (2012)

Tissue competition

Homeostatic pressure $P_{\rm h}$

Tissue competition and tumor growth

 $P_{\rm h}^{\rm ct} > P_{\rm h}^{\rm ht}$

Dysplasic tissue Healthy tissue

Dissipative particle dynamics

Dysplasic tissue Healthy tissue

Basan et al., HFSP J. (2009)

Basan et al., Phys. Biol. (2011)

Nucleation and metastatic inefficiency

Fidler, Nature Rev. Cancer (2003)

Basan et al., HFSP J. (2009)

Tissue alone with fluctuations

Epithelium

Compressible medium with stochastic source term

$$\partial_t \rho + \partial_\alpha (\rho v_\alpha) = (k_{\rm p} + \xi_{\rm c})\rho$$
$$\langle \xi_{\rm c}(\mathbf{r}, t) \rangle = 0$$
$$\langle \xi_c(\mathbf{r}, t) \xi_c(\mathbf{r}', t') \rangle = \frac{k_d + k_a}{\rho} \delta(\mathbf{r} - \mathbf{r}') \delta(t - t')$$

Close to homeostatic conditions

$$\begin{split} \delta\rho &= \rho - \rho_{\rm h} \qquad \delta\sigma = \sigma - \sigma_{\rm h} \\ k_{\rm p} &= -(1/\tau_{\rm i}) \left(\delta\rho/\rho_{\rm h} \right) = (1/\tau_{\rm i}) \, \chi_{\rm c} \, \delta\sigma \end{split}$$

Tissue alone with fluctuations

Effective Maxwell model

$$(1 + \tau_{i}\partial_{t})\delta\sigma = \zeta v_{\gamma\gamma} - \xi \qquad \qquad \delta\sigma_{\alpha\beta} = \tilde{\sigma}_{\alpha\beta} + \delta\sigma\,\delta_{\alpha\beta}$$
$$(1 + \tau_{a}\partial_{t})\,\tilde{\sigma}_{\alpha\beta} = 2\eta\tilde{v}_{\alpha\beta} - \tilde{\xi}_{\alpha\beta} \qquad \qquad \partial_{\alpha}\delta\sigma_{\alpha\beta} = 0$$

Ranft et al., PNAS (2010)

Correlation and response functions

$$C(\mathbf{r} - \mathbf{r}', t - t') = \langle \delta H(\mathbf{r}, t) \delta H(\mathbf{r}', t') \rangle$$
$$\langle \delta H(\mathbf{r}, t) \rangle = \int \chi(\mathbf{r} - \mathbf{r}', t - t') \delta P_e(\mathbf{r}', t') d\mathbf{r}' dt'$$

Effective temperature

$$k_{\rm B}T_{\rm eff}(q,\omega) = \frac{\omega}{2} \frac{C(q,\omega)}{\chi''(q,\omega)}$$

Thermodynamic limit

 $T_{\rm eff}(q,\omega) \equiv T$ for $\theta = 2\eta k_{\rm B}T$ and $\vartheta = 2\zeta k_{\rm B}T$

 $\begin{array}{lll} \eta & \text{shear viscosity} & \theta & \text{shear noise amplitude} \\ \zeta & \text{bulk viscosity} & \vartheta & \text{bulk noise amplitude} \end{array}$

Infinite-thickness limit

Long-time limitPassive fluid at Teff, infinitely compressibleShort-time limitPassive compressible Maxwell elastomere

Effective temperature

$$k_{\rm B}T_{\rm eff}(q,\omega) = \frac{\omega}{2} \frac{C(q,\omega)}{\chi''(q,\omega)}$$

Finite thickness in the long-time limit

Risler, Peilloux, Prost, PRL (2015)

Generalized fluctuationdissipation relation

In the long-time limit

$$\partial_t \,\delta H(q,t) = -\tau(q)^{-1} \,\delta H(q,t) + f(q,t) + \xi_H(q,t)$$
$$\langle \delta H(q,t) \delta H(q',t) \rangle = \Sigma(q) \,\delta(q+q')$$

Prost et al., PRL (2009)

$$X(q,t) = -\tau(q)^{-1} \Sigma(q)^{-1} \,\delta H(q,t)$$

$$\chi_{XX}''(q,\omega) = \frac{\omega}{2}C_{XX}(q,\omega)$$

Risler, Peilloux, Prost, PRL (2015)

Analogy with membranes

In the long-time and long-wavelength limit

$$C(q,\omega) \simeq \frac{1}{H} \frac{\vartheta + \frac{4}{3}\theta}{(\gamma q^2 + \kappa q^4)^2 + \omega^2 \lambda_{\rm p}^{-2}}$$

Analogous to a membrane near a wall with permeation constant

$$\chi(q,\omega) \simeq -\frac{1}{\gamma q^2 + \kappa q^4 + i\omega \lambda_p^{-1}}$$

$$\lambda_{\rm p} = \frac{H}{\zeta + \frac{4}{3}\eta}$$

$$k_{\rm B}T_{\rm eff} \simeq \frac{1}{2} \frac{\vartheta + \frac{4}{3}\theta}{\zeta + \frac{4}{3}\eta}$$

Analogy with membranes

Equal-time correlation function

$$C(q, t - t' = 0) \simeq \frac{k_{\rm B}T_{\rm eff}}{\gamma q^2 + \kappa q^4}$$

Collision length $\langle \delta H(0,t) \delta H(l_{\rm c},t) \rangle = H^2$

Tension-dominated regime

$$\gamma H^2 \gg k_{\rm B} T_{\rm eff}$$

$$l_{\rm c} \propto H \sqrt{\frac{\kappa}{k_{\rm B} T_{\rm eff}}} = l_{\kappa} \sqrt{\frac{\gamma H^2}{k_{\rm B} T_{\rm eff}}} \qquad \qquad l_{\kappa} = \sqrt{\kappa/\gamma}$$

Bending-dominated regime

 $\gamma H^2 \ll k_{\rm B} T_{\rm eff}$

$$l_{\rm c} \propto l_{\kappa} \exp\left(\frac{\pi \gamma H^2}{k_{\rm B} T_{\rm eff}}\right)$$

Risler, Peilloux, Prost, PRL (2015)

Acknowledgements

A. Peilloux

M. Basan

J.-F. Joanny

J. Prost

X. Sastre-Garau

