Sommaire

microorganismes nageurs

bactéries

la nage d'E. Coli, motorisation

autres bactéries

eukaryotes

organismes unicellulaires mono et biflagellés tapis de cils

structure et motorisation des cils et flagelles

- hydrodynamique à Re=0
 - les contraintes de l'absence d'inertie
 - hydrodynamique des cils et flagelles

interactions

- interactions entre cils, synchronisation
- interactions avec une paroi, pompes biologiques microscopiques
- interactions entre nageurs, comportements collectifs

systèmes artificiels

viscosité et élasticité micronageurs magnétiques

Théorème de la coquille St Jacques : pour nager il faut briser la symétrie +t/-t

Absence d'inertie = somme des forces et des couples = 0

L'anisotropie de mobilité est essentielle

Pour un objet très allongé

 $\zeta_{\perp} \approx 2 \zeta_{\parallel}$

coordination des cils

Paramètres de modèle ajustés sur l'observation de cils de paramécie

Loi de rétroaction des efforts hydrodynamiques sur les moteurs

Synchronisation de deux cils

génération d'ondes métachronales

Cils des planaires

5 P. Rompolas, R. S. Patel-King, and S. M. King Mol. Biol. Cell **21** 3669 2010

Cils des planaires

P. Rompolas, R. S. Patel-King, and S. M. King Mol. Biol. Cell 21 3669 2010

Modifications des battements et d ela synchronisation.

b

Control RNAi

Smed-ic2

Smed-lc1

(RNAi)

(RNAi)

Smed-ic2(RNAi)

Control RNAi

Smed-ic2(RNAi)

Smed-lc1(RNAi)

Cils nodaux et différentiation droite-gauche des embryons

S.S. Plotkin website

S. Yoshiba et al., Science, 2012

Cils nodaux et différentiation droite-gauche des embryons

а

Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. Nature **418**, 96–99 (2002).

Pousseurs et tireurs

I nageur autonome = I dipôle de forces

Bacillus Subtilis

A. Sokolov et al., PRL 98, 158102 (2007)

Source d'énergie

systèmes hybrides avec moteurs biologiques

systèmes catalytiques

nageurs magnétiques

Mouvements non réciproques

Compétition viscosité élasticité

Compétition couple moteur/résistance visqueuse

Couplage rotation/translation

Modèles physiques de propulsion ciliée

T. S. Yu, E. Lauga and A. E. Hosoi, Phys. Fluids, 18, 091701, 2006

Une analyse en loi d'échelle

Energie élastique $U_{el}/L \sim \frac{\kappa_b}{R^2}$

Couple visqueux

$$U_{el} \sim \frac{\kappa_b}{L} \sim \eta \omega L^3$$

$$Sp \sim \left(\frac{\eta \omega L^4}{\kappa_b}\right)$$

$$l_{ev} \sim \left(\frac{\kappa_b}{\eta}\right)^{1/4} \omega^{-1/4}$$

Nageurs macroscopiques artificiels

Auto-assemblage unidimensionnel

 Particules colloidales superparamagnetiques

rayon 0.1 à 2 microns

• auto-assemblage dipolaire

Typical magnetization curve (Dynabeads M450)

glued or not

Cross linking

- non specific adsorbtion (PAA)
- specific binding

Non cross-linked particles anchored on nickel dots

Vilfan et al. PNAS, 107, 1844 (2010)

bending coefficient $K \sim 8 \times 10^{-26}$ J.m persistence length $I_p = K/k_BT$ $I_p \sim 20$ microns

Actuation des cils

interaction dipole-dipole entre deux colloïdes

$$E_m = \frac{\mu_o m^2}{4\pi} \left[\frac{1 - 3\cos^2\theta}{r^3} \right]$$
$$E_m \propto \frac{\chi_e^2 B^2 a^3 (1 - 3\cos^2\theta)}{\mu_0}$$

les

à r=a

$$\Gamma_m = \frac{\partial E_m}{\partial \theta} \propto \frac{\chi_e^2 B^2 a^3 \sin 2\theta}{\mu_0}$$

Compétition effets visqueux/effets magnétiques

$$\mathcal{L}_{mv} \sim \left(\frac{\lambda k_B T}{a\eta\omega}\right)^{1/2}$$

Couple visqueux :

 $\Gamma_{visc} \sim \eta \omega L^3$

Couple magnétique :

$$\Gamma_m = \frac{\partial U_{mag}}{\partial \theta} \sim \lambda k_B T \frac{L}{2a} \sin 2\theta$$

pumping efficiency of rotation on a tilted cone

Vilfan et al. PNAS, 107, 1844 (2010)

Ecoulement induit par les cils magnétiques

Battement asymétrique, f+/f- = 10

A. Babataheri, M. Roper, M. Fermigier & O. du Roure, J. Fluid Mech. 678 5 (2011)

Nageurs magnétiques

R. Dreyfus et al., Nature **437**, 862 (2005)

Efficacité de propulsion

