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Motivation

Goal:

» Measurement of the surface water waves

Constraints:
» Non-intrusive probes

» Easy maintenance

Solution:
> Pressure gauges at the bottom

» Surface recovery from pressure data
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Problem:
» How?



Typical Problem




Model Problem

Hypothesis:
» Two-dimensional problem
» Permanent flow
» Perfect fluid with constant density
» Irrotational motion

» Flat horizontal bottom

Notations:
> d: mean depth
» g: acceleration due to gravity
» p: pressure divided by density
> x,y: horizontal and upward vertical coordinates

» u,v: horizontal and vertical velocities

v

¢, : velocity potential and stream function



Fundamental Equations
Incompressibility and Irrotationality for x € R, y € [—d, 7]:
u = 0xop = 0,1, v = 0,09 = —0x.

Bottom’s impermeability at y = —d:

w = 0.
Free surface’s impermeability at y = 7(x):

Vs = Tx Us
Free surface isobarity at y = 7(x):
2gn + us2 + V52 = B

Subscripts ‘b’ and ‘s’ denote quantities at the bottom and at the surface,
and 7, = dn/dx
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Definition of Physical Quantities

(27 /k)-periodic waves (k — 0O for solitary waves).

Definition of the mean water level:
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Bernoulli's constant:
B = (u?+ v?) = <ub2> > 0.
Mean pressure at the bed:
(pp) = gd.
Bernoulli’s equation:

2

2p + 2gy + v* + v2 = B.



Definition Sketch

2gn+ > +v2 =8B

2p+2gy +u>+v: =8B

P:Pb(X)\ v=0




Linear Wave

Approximation for infinitesimal waves in finite depth:

n(x) =~ a cos(kx)

o(x,y) ~ —cx + mcosh(k(y+d))sin(kx)
ka
px.y) = —gy + Wcosh(k(erd))COS(kX)
B ~c?

c® ~ gk tanh(kd)



Hydrostatic Recovery

Hydrostatic approximation:

p(x,y) =~ g(n(x) —y).

Approximate surface:

n(x) = po(x)/g — d.

Error exceeding 15% for moderate waves.
(Bishop & Donelan 1987, Coastal Engineering 11)



Linear Wave Recovery

Considering the linear wave approximation:

n(x) ~ cosh(kd)[pv(x)/g — d].

(Escher & Schlurmann 2008, J. Nonlinear Math. Phys. 15)

Overestimate large waves height by more than 10%.
(Tsai et al. 2005, Ocean Engineering 32)



Fully Nonlinear Recovery

Without approximations:

B — 2gn(x) — kx A
28N k%, cosh(nk d),
L+ [0 2 n;we cosh(nk[n(x) + d])
where
. k 2n/k
0, = > e "\ /B — 2py(x) + 2gd dx.
0

(Oliveras et al. 2012, SIAM J. Appl. Math. 72, 3)



Complex Variables

Complex abscissa:
z = x + 1y

Complex potential:
f(z) = ¢(x,y) + iv(x,y)
Complex velocity:

) df
W(Z) - U(Xay) - 1V(X7y) - &

Bernoulli equation:
_ B g(z—2) 1|df




Complex Pressure

Let be the holomorphic function:

P(z) =3B + gd — 2w?(2)



Complex Pressure

Let be the holomorphic function:

R(z) =3B + gd —
=1B + gd —

w?(2)

(v —v?) + iuv

NI= N



Complex Pressure

Let be the holomorphic function:

P(z) =3B + gd — 2w?(2)
:%B + gd — %(uz—v2) + iuv

At the bottom z = x —id where v = 0:
P(x—id) = 3B + gd — 3uf = po(x)
In the fluid x e R, y € [—d,n(x)]:
P(z) = po(z +id)

Note that p # Re{3} and p # Im{B} if y # —d.
In particular, P #0 at y = n(x).



Complex Surface Boundary Condition

At the free surface y = n(x) where v; = n,us:

Ws = (uS _iVS)z = (1 _inX)2 us2
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Complex Surface Boundary Condition
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Complex Surface Boundary Condition
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Complex Surface Boundary Condition

At the free surface y = n(x) where v; = n,us:

Us — ivs)2 =(1- i77X)2 ”52

(

(1 —ine)® ul (1 +in) /(1 +in)
= (14 n2)u (1 —in) /(1 +in)
(Us2 + Vs2)(1 —ine) /(1 +inx)
(B —2gn)(1—inc)/(1+inx)



Complex Surface Boundary Condition

At the free surface y = n(x) where v; = n,us:

(us — ivs)2 =(1- i77X)2 ”52
(1 —ine)® ul (1 +in) /(1 +in)
= (L4 n2)ul (1 —in) /(1 +inx)
(v +v2) (1 —in) /(1 +inx)
(B —2gn)(1—in)/(1+1inx)

Thence, after multiplication by 1 + in, and exploiting
(B — w2) = 2(Bs — gd) with P(x) = P(x +in(x)):

ng(l _inx) + iB??x = (f’ps _gd)(l +i77x)



Real Surface Boundary Conditions

Splitting real and imaginary parts:

B — u?2 — 2
[ s s
(B + u? + v«

gn =
(B—gn)nx =

Nl= N=

Both equations are ensured by the validity of the Bernoulli
equation at the free surface.



Example 1: Fourier Series

Fitting pressure data with Fourier polynomials:

N
po(x) =~ gd + Z pn exp(inkx)

[n|>0

with p_, =p, since p, is real.

Approximated complex pressure (x — z + id):

N exp(inkz)
B(z) = gd + Z an,

[n|>0

Easy calculation!



Example 2: Cnoidal Wave

Fitting pressure data with Jacobian elliptic functions:

po(x) ~ gd + A[dn’(kx|m) — E(m)/K(m)]

Approximated complex pressure (x — z + id):

B(z) = gd + A[dnz(m(z+id)]m) - E(m)/K(m)]

Solitary waves (m — 1):

P(z) = gd + Asech?(r(z +id))

Still very easy!



Equations for the Surface

Surface — Pressure equation:
gn (1l —in)+ iBne = (PBs —gd) (1 +in)
At the wave crest where 1, =0, x=0 and n = a:
a = g 'P(ia) - d
The imaginary part of (1) yields the ODE:
nx = Im{Ps} / (B — gn — Re{P:s} + gd)
together with 7(0) = a.

Bernoulli’s constant B determined from (7)) = 0.

(1)
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Application

Large wave in rather deep water:
» Wave Length / Depth: 27/kd = 5;
» Wave Height / Depth: (a+ b)/d = 0.4;
» Amplitude / Depth: a/d = 0.25.

Exact solution computed numerically (Fenton 1988).
Bottom pressure discretized at 32 equally spaced nodes.

Fit of a fifth-order Fourier polynomial.



Pressure at the bed: Profile
T T
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Reconstruction Equations

At the wave crest where 1, =0, x=0 and n = a:
a = g 'PQla) — d
ODE for the free surface:
nx = Im{Ps} / (B — gn — Re{Ps} + gd)
together with 7(0) = a.
Bernoulli’s constant B determined from (7)) = 0.

(Clamond & Constantin 2013, J. Fluid Mech. 714)



Let be the

Q(z) =

Analytic Resolution

new holomorphic function:

/Z [(R() — gd]de =

20



Analytic Resolution

Let be the new holomorphic function:

Q(z) = /Z[‘B(z’) — gd]dZ = /Z%[B — w(Z)?]dZ

At the free surface (with z, = ia):
Qu(x) = /0 [P (<)) — gd][1 + ine(x)]dx!

- /Oxgn(x’)dx' Ll — a][B — lga— lgn()]



Analytic Resolution

Let be the new holomorphic function:

Q(z) = /Z[‘B(z’) — gd]dZ = /Z%[B — w(Z)?]dZ

20

At the free surface (with z, = ia):
&ur=£[mW+m%»—gﬂu+»mwnw'

= /Oxgn(xl)dxl—l—i[n(x)—a][ —%ga—%gﬁ

Imaginary part:

1= et|8 - (B gaP - 2gmia)



Example 1 Revisited

Fitting pressure data with Fourier polynomials:

N
po(x) =~ gd + Z pn exp(inkx)
[n|>0

Approximated complex pressure (x — z + id):

N exp(inkz)
= gd it bt
P(z) = gd + %:0 P oo(nkd)

Antiderivative of 3 — gd:

pn exp(inkz) — exp(—nka)

Q(z) = .
(2) o i k exp(nkd)

Easy calculation!



Example 2 Revisited
Fitting pressure data with Jacobian elliptic functions:
po(x) ~ gd + A[dn*(kx|m) — E(m)/K(m)]
Approximated complex pressure (x — z + id):
B(z) = gd + A[dn’(k(z +id)|m) — E(m)/K(m)]
Antiderivative of L3 — gd:
Q(z) = (A/r)[Z(k(z +id)|m) — Z(ir(a+ d)[m)]
Solitary waves (m — 1):
Q(z) = (A/k)[tanh(k(z +id)) — itan(s(a+ d))]

Still very easy!



Crest, Trough and Bernoulli’s Constant

Crest amplitude given implicitly (1, =0, x =0, n = a):
a = g 'Plia) - d
Trough amplitude given implicitly (7, =0, x = 7 /k, n = —b):
b=d— g P(-ib)
Bernoulli constant given explicitly:

B = ig(a—b) — (a+b) ' Im{Q(x/k —ib)}



Convergence at the Crest

Let be the iterations for x =0 and y € [—d,a]:

y = F(y) = g 'Re{B(iy)} - d

Convergence occurs if —1 < F, <1 with:

Fy =1 + Py(oa)/)/g = _U(Oa)/)“y(oa)/)/g
Since —g < p, <0 under the crest, the inequality is fulfilled.

(Constantin 2006, Invent. Math. 166)
(Constantin & Strauss 2010, Comm. Pure Appl. Math. 63)



Convergence at the Trough

Let be the iterations for x =7/k and y € [—d,—b]:
y = F(y) = g 'Re{P(n/k +1iy)} — d
Convergence occurs if —1 < F, <1 with:
Fy = 1+ pln/ky)/g = —ulx/ky)u(r/ky)/8g

Since 7 < p, < —g under the trough, the upper inequality is
fulfilled, but the lower one is likely.



Convergence for the Surface

Let be the iterations for y € [—d,n(x)]:

B V(B —ga)? — 2g Im{Q(x +iy)}

y:G(Y)EE 2

Convergence occurs if —1 < G, <1 with:

_ p+ gy + v
y - 2 2
2p+ gy + U2 + v

Condition G, > —1 yields p+v?+ B >0: OK.

Condition G, <1 yields p+ u?> >0 : OK, except at the
crest of the highest wave.



Limiting Waves

For the surface iterations:

_ gG +p,+g+2vvy, g6, + Im{ww,}

G, = =
Y 2pt+gy P+ B—gy



Limiting Waves

For the surface iterations:

gG, +p +g+2vvy, g6, + Im{ww,}
Gy = 5 2 2 B —
p+gy +u +v gy

Local expansion at an angular crest (Stokes 1880):

= a— 32 + O(),
w? = ig(z—ia) + O((z—ia)"),

where v =~ 2.204 is the smallest root of (Grant 1973)
V3tan(vr/3) = -1 — 2/v

Thus G,, = 3/2a > 0 at the crest: Iterations converge from
the fluid side y < a (and diverge from above y > a).



Limiting Waves - Continued

For the crest iterations:

F _ Py _ Ref(w?)}
yy

g 2g

Thence F,, =0 at the crest and F,,, is needed to conclude
on the convergence.



Limiting Waves - Continued

For the crest iterations:

Foo— Py _ Re{(w?)z}
yy g 2g

Thence F,, =0 at the crest and F,,, is needed to conclude
on the convergence.

But f,,, — oo at the crest.



Summary

Problem reformulation.
Analytic resolution.
Easy numerical computations.

Thanks to the w? and 9 functions.

References:
Clamond & Constantin 2013, J. Fluid Mech. 714, pp. 463-475.
Clamond, D. 2013. J. Fluid Mech. 726, pp. 547-558.



Perspectives

Practical applications:

» Noisy data, outliers.
» Unstationary signals.

» More complex physics (e.g., viscosity, breaking).

Generalizations:
> Rotational flows: Feasible.
» Unsteady motions: Perhaps.
» Three-dimensional case: More challenging.



That's it!
Thank you.



