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Static Wetting of liquids and Solids Introduction

Some examples

J.-J. Métois, Au/Graphite
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Static Wetting of liquids and Solids Introduction

Differences between liquids and solids

Simple Liquids Crystalline solids

Structure Isotropic Anisotropic
Energy Surface & Interface Surface & Interface + Elastic

Mass Transport Bulk hydrodynamics Surface diffusion

Other cases: Liquid crystals, Non-Newtonian Fluids, amorphous solids, etc.

→ Similar or different behabiors?
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Static Wetting of liquids and Solids Wulff-Kaishew construction
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Equilibrium equations

Free energy

F =

∫
VS
ds γVS (θ) +

∫
SA
ds γSA(θ) +

∫
AV
ds γ(θ)

Total number of atoms

N = Ω−1
∫ ∫

A
d2r

Vanishing variation
δ(F − µN ) = 0
→ Equilibrium equations

J.-J. Métois, Au/Graphite

θ0

s

θ

S

A
V
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Spreading or not spreading

Spreading coefficient S = γSV − γSA − γ(0)

Complete dewetting Partial Wetting Total Wetting
γSV + γ(0) < γSA −γ(0) < γSV − γSA < γ(0) γSV > γSA + γ(0)

S < −2γ(0) −2γ(0) < S < 0 S > 0
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Facets

Roughening temperature Tr

γ(θ)

T<Tr T>Tr
.

hi

NaCl, Métois et al (620-710o C)

For usual crystals Tr ∼ TM
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Equilibrium shape, Wulff 1901

Away from the substrate: Wulff Shape

• Discrete with facets

hi =
Ωγi

µ

Facet free energy γi

• Continuum

µ = Ωγ̃(θ)κ

Stiffness γ̃(θ) = γ(θ) + γ′′(θ)

Remarks:

Wulff construction

Equilvalence discrete - continuum

Possible coexistence of smooth and facetted parts

hi

hj

s

θ
κ

R
=1/R.
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Wetting equil. shape / flat substrate: Kaishew 1950, Winterbottom 1967

Main idea: flat substrate ↔ facet

• Global condition: Truncation

hs = −
Ω(γVS − γSA)

µ

OR

• At the triple line if no facet: Young equation

γVS − γSA = γ(θ0) cos(θ0)− γ′(θ0) sin(θ0)

Contact angle not a good parameter for facetted crystals!

hs

hi

hj

θ0 hs
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Isotropic

Isotropic solid or liquid: γ(θ) = γ̄

µ = Ωγ̄κ ⇔ R =
Ωγ̄

µ

γ̄ cos(θ0) = γVS − γSA ⇔ hs = −
Ω(γVS − γSA)

µ

θ0 hs

R
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Finite size effects

Expansion of the thermodynamic energy in 3D

E ∼ γ3N + γ2N 2/3 + γ1N 1/3 + ...

γ3 ∼ chemical potential N ∼ L3

γ2 ∼ surface energy N 2/3 ∼ L2

γ1 ∼ line energy N 1/3 ∼ L

higher orders are non-trivial!
Perstipino, Laoi, Tosatti PRL2012, J.Chem.Phys. 2013

Edges between facets or Triple line ∼ L ∼ N 1/3

⇒ corrections to the equilibrium shape.
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Contact angle influenced by triple line tension

γTL positive or negative
3D isotropic with line tension

G = γ̄A+ (γAS − γSV )AS + γTLLTL − µN

Spherical cap

R =
Ωγ̄

µ

Modified truncation

γ̄
hs

R
= γAS − γSV +

γTL

(R2 − h2
s )1/2

Modified contact angle

γ̄ cos θ = γSV − γAS −
γTL

R sin θ

Edge

Surface Volume
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Static Wetting of liquids and Solids Wulff-Kaishew construction

Non-frozen substrate

C. Herring (1951): Triple-point (triple-line):

3∑
i=1

(γi ti + γ′i ni ) = 0

(1)

(2)

n

t

γ
1

1

1

(3)

Zakharov et al Physica E (2007)
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Static Wetting of liquids and Solids Thin Films
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

Flat film thickness h

free energy f (h)

f (h = 0) = γSV

f (h→ +∞) = γSA + γ(θ = 0)

Relation f ↔W

f (h) = γSA + γ(0) + W (h)

wetting potential W (h)

W (0) = S
W (+∞) = 0

Disjoining Pressure
Π = −W ′(h)

h(x,t)

.

A

A

S

V

S

V
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

Stability

h(x,t)

h(x,t)

x− x+

.

W ′′(h) > 0 Wn+1 − 2Wn + Wn−1 > 0

W(h)

h

W(h)

.

h=na
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

Equilibrium: Double tangent construction

h h
h

W(h) W(h)

h=na

.

Film Tension

γflat
film = f (h)− hf ′(h)

Equilibrium with substrate

γflat
film = γSV

Film Tension

γ+
film = fn − n(fn+1 − fn)

γ−film = fn − n(fn − fn−1)

Equilibrium with substrate

γ+
film < γSV < γ−film
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

Wetting Regimes

h

W(h)

S>0

S<0

Complete

Partial

h

W(h)

S>0

Pancake

Pseudo−partial

S>0

Small slope free energy

f (h) = γSA + γ(0) + W (h) +
Γ(h)

2
(∂x h)2,

Γ(h)→ γ̃(0) when h→∞

Macroscopic contact angle

γ̃(0)
θ2

0

2
= W (∞)−W (0) = −S

Line tension

γTL =

∫ ∞
0

dh
{[

2Γ(h)(W (h)− S)
]1/2

−
[
2γ̃(0)(−S)

]1/2}
.

...Small slope model → lecture notes OPL
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

Bonds and structural effects

Type form prefactor range

Chemical bonds W0e
−h/d0 W0 ∼ J/a2 d0 ∼ a

Layering of Liquids and Polymers W0 cos(2πh/a0)e−h/d0 W0 ∼ kB T/a2 d0 ∼ a

Structural effects solids T < TR W0 cos(2πh/a0) W0 ∼ J/a2 , kB T � J (a0 = a)

Wetting potential Ge/Si

G.-H. Lu and F. Liu, PRL, 94 176103 (2005)
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

DLVO-like contributions

Type form prefactor range

Electrostatic effects W0e
−h/λD W0 = 2

σ2λD
ε0ε

λD

Van der Waals Interactions − A
12πh2 A ∼ 10−20 − 10−19J −

Israelachvili, Intermolecular and surface Forces (1985)

Polymers Layering J. Krawczyk et al EPL 70 726 (2005)

Liquids Layering: Hansen and McDonald, Theory of Simple Liquids (2006)
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Static Wetting of liquids and Solids Thin Films

Thin film Wetting potential

... and many other possible contributions!

Type form prefactor range

Electronic confinement
Efb
h2 cos(2kfbh + φ) Efb = 5.55eV (Ag) osc. λf /2

Z. Zhang et al, Phys.Rev.Lett.1998,1999
B. Wu and Z. Zhang, Phys. Rev. B 77, 035410 (2008)

Yong Han and Da-Jiang Liu PRE 80 155405 (2010)

Debate in the literature: 1/h or 1/h2?
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Static Wetting of liquids and Solids Thin Films

Electronic Quantum confinement

Free electron model

WEC (h) ≈ −
Efb

(h + 2b)2

π

36
√

3
cos(2kfbh)

Efb, kfb Fermi energy and wavevect,
b = 3πkfb/8

(b)

(c) (d)

(a)

(a) Al(111) (purple squares), Ag(111) (blue circles)
(c) Al(111) ,(d) Ag(111) blue-Stable, red-Unstable
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Static Wetting of liquids and Solids Thin Films

Growth modes

Volmer-Weber Frank Van der Merve Stranski-Krastanov
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Static Wetting of liquids and Solids Thin Films

Pseudo-partial wetting vs ATG

Stranski-Krastanov
Pseudo-partial wetting vs ATG

.

W(h)

Pseudo−partial

.

h

A

S

V

SiGe MBE growth
Floro et al 1999

recent developments ...
Aqua, Frisch, Berbezier, et al PRB (2010) PRL (2013)
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Static Wetting of liquids and Solids Elastic effects
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Static Wetting of liquids and Solids Elastic effects

ATG instability

Hetero-epitaxial strain ε0 = (af − as )/as

In plane strain uxx = uyy = ε0

Stress σ0 = −Y ε0/(1− σ)
Flat film energy

Eel = −hε0σ0 =
Y

1− σ
hε2

0

Periodic perturbation δh, `

δEel ∼ −δhεσ0 + Cε2`

Minimize ε ∼ δhσ0/C`
Total perturbation energy

δE =
γ

2
q2δh2 − Cε2

0δh2q

Wavelength

`ATG ≈ 2π
γ

Cε2
0

.

C ∼ Y ∼ 1011Pa, γ ∼ 1Jm−2, and ε = n%
→ `ATG ∼ n−2µm
(1µm for 1% misfit to 10nm for 10% misfit)

h

hδ

.
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Static Wetting of liquids and Solids Elastic effects

ATG instability

Almost flat surface: 2D absorbate on flat surface
height h ∼ surface stress σ = σ0 + αh
Local surface forces f and elastic energy Felas

f = −∇σ = −∇σ0 − α∇h

Felas =
1

2

∫
dr1

∫
dr2φ12

φ12 = −
1 + σ

πE

[
(1− σ)

f1 · f2

|r12|
+ σ

(f1 · r12)(f2 · r12)

|r12|3

]
Edges and steps → force lines
f(r) = f0(n0(s))δ(r − r0(s))
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Static Wetting of liquids and Solids Elastic effects

Islands

Contributions to the energy in 3D
Misfit ε = ∆a/a
Gisl = Fisl − µN :

Gisl = +Γsurf a2N 2/3 Surface

+γe1aN 1/3 Edge

−(µ+ f1λε
2)a3N VolumeElastic

−γe2f2aN 1/3 ln[N ] EdgeElastic

Γsurf , γe1, γe2 renormilzed by ε

Edge

Surface Volume

Schukin and Bimberg Rev Mod Phys 1999

Müller and Saúl Surf. Sci. Rep. 2004
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Dynamics of solid wetting Dewetting dynamics
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Dynamics of solid wetting Dewetting dynamics

Liquid-state Dewetting

Polymer film (PDMS/Si)
G. Reiter et al PRL2000,2001, Fetzer et al
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Dynamics of solid wetting Dewetting dynamics

Dewetting experiments: surface diffusion + anisotropy

Experiments SOI: Si(100)/a-SiO2

P. Müller et al Cinam Marseille

SOI (Si/SiO2), AFM
Dornel Barbe Crecy Lacolle Eymery PRB2006
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Dynamics of solid wetting Dewetting dynamics

Surface Diffusion Mullins’ Model

Local chemical potential µ = Ωγ̃κ.
Mullins model:

j = −
Dc

kB T
∂sµ

vn = −Ω∂s j

Triple Line
Equilibrium contact angle θ = θ0

vn ∼ ∂ssκ
Relaxation time of island perturbations
t ∼ L4

Small slope limit

∂t h = −B∂xxxx h

Linear but free boundary

θ0

s

θ

S

A
V

j
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Dynamics of solid wetting Dewetting dynamics

Liquids: viscosity and substrate friction

Viscous dissipation under shear γ̇ = ∂y vx + ∂x vy

dQ ∼ ηγ̇2dV

Continuity of tangential stress Navier 1823

η∂y v |wall = λ∆v → ∆v = b∂y v |wall

Slip length

`s =
η

λ

V

y

x

.

b

V∆

`s is usually small!
Link to wetting: hydrophobic ⇒ depletion ⇒ b increases
`s ∼ (1 + cos θ)−2

D. M. Huang, et al Phys. Rev. Lett. 101, 226101 (2008)

at max tens of nm for water on atomically flat hydrophobic surfaces
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Dynamics of solid wetting Dewetting dynamics

Hydrodynamics, lubrication Model

Local pressure variation ∆p = γ̃κ.
Lubrication Model ∂x h � 1, viscosity η, slip
length `s

j = −
1

ηΩ
(h3/3 + `s h2)∂x ∆p

∂t h = −Ω∂x j

∂t h = −
γ

η
∂x [(h3/3 + `s h2)∂xxx h]

Triple Line
Equilibrium contact angle θ = θ0

Linear peturbations h = h∗ + δh
∂tδh ∼ ∂xxxxδh
Relaxation time of small perturbations
t ∼ L4

θ0

s

θ

S

A
V

j
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Dynamics of solid wetting Dewetting dynamics

Generalized Model predictions 1D & small slopes

∂t h = ∂x [hn∂xxx h]

Scaling θ � 1

∂xx h ∼
1

R
h ∼ Rθ2 x ∼ Rθ

Triple line velocity

v =
1

θ
∂t x0 =

1

θ
∂x [hn∂x

1

R
] ∼

θ2n−3

R3−n

Mass conservation

∂tS = vh∗ → θ3∂t R2 ∼
θ2n−3

R3−n
h∗

S ∼ hL ∼ R2θ3

Asymptotic scaling

R ∼ θ−2(3−n)/(5−n)h
1/(5−n)
∗ t1/(5−n)

x0 ∼ θ(3+n)/(5−n)h
−(3−n)/(5−n)
∗ t2/(5−n)

h

x , r

θ h*
R

S

x
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Dynamics of solid wetting Dewetting dynamics

Multi-scale expansion / Example: n = 0, solid-state dewetting

Wong, Vorrhees, Miskis, Davis (2000)

small slope limit ∂x h� 1
Mullins model

∂t h = −∂xxx h

h(x0(t)) = 0, ∂x h = tan θ = α, ∂3
x h(x0(t)) = 0, h(x →∞) = 1.

normalized varibales

X = α(x − x0(t)), Y = h, T = α4t, b = α−3 dx0

dt
.

Boundary conditions

Y (X = 0) = 0, ∂X Y (X = 0) = 1, ∂3
X Y (X = 0) = 0, Y (X →∞) = 1.

Slow dynamics Y = Y0 + Y1 + Y2 + ...., with Yn+1 � Yn

∂4
X Y0 − b3∂X Y0 = 0

∂4
X Yn − b3∂X Yn = −∂T Yn−1

Solve Yn order by order and then impose no-flux condition

x0(t) = α

(
5t

2α

)2/5

−
5

4

(
5t

2α

)1/5

+ ....
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Dynamics of solid wetting Dewetting dynamics

Example: n = 0, solid-state dewetting

Asymptotic scaling

R ∼ θ−6/5h
1/5
∗ t1/5

x0 ∼ θ3/5h
−3/5
∗ t2/5

Mass shedding Wong, Vorrhees, Miskis, Davis (2000)

0θ 0θ0θ

0θ h*

0θ h*

h*

Breakup
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Dynamics of solid wetting Dewetting dynamics

Example: n = 2, 3, liquid-state dewetting

Asymptotic scaling n = 2

R ∼ t1/3

x0 ∼ t2/3

Asymptotic scaling n = 3

R ∼ t1/2

x0 ∼ t

No Mass shedding!
critical value n = 3/2

h

x , r

θ h*
R

S

x
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Dynamics of solid wetting Dewetting dynamics

Evidences of facets on the rim

Ni(110)/MgO
J. Ye and C.V. Thompson, Acta Materialia 59, 582 (2011).

SOI (Si/SiO2), AFM
Dornel Barbe Crecy Lacolle Eymery PRB2006

SOI (Si/SiO2), LEEM
E. Bussman et al, New J. Phys. 2011

DEWETTING WITH FACETS?
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Dynamics of solid wetting Dewetting dynamics

Nucleation barrier

Dynamics limited by peeling or nucleation
Combe, Jensen, Pimpinelli, Phys Rev Lett 2000

Mullins and Rohrer, J. Am. Ceram. Soc. 2000

Cost: 2πργstep

Gain: πρ2∆µ per atom, with ∆µ = Ω (−S)/h
Total:

G = γstep2πρ−
−S
Ωh

πρ2

Gc = Ωπ
γ2

steph

−S

I = ρ0Γ+c

(
−a4∂ss Gc

2πT

)1/2

e−Gc/T ,

Slow relaxation time t ∼ eGc/kB T ∼ eh

ρ

Gc

G

ρ

h

Experiments Ice/Pt(111)
Thurmer, Bartelt P.R.L. 2008
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Dynamics of solid wetting Dewetting dynamics

Facetted rim dynamics

Surface diffusion on top facet:

∆µ = Ω
−S
h1

h1∂t x1 ∼
∆µ

`

`(h1 − h∗) = x1h∗

h1 � h∗ ⇒ x1 ∼ t1/2h
−1/2
1

We recover the previous law:
` ∼ h1 ⇒ h2

1 ∼ x1 ⇒ x1 ∼ t2/5

Facetted rim

∂t h1 ∼ e−Gc ∼ e−Ωπγ2
step h1/(−S)

⇒ h1 ∼ ln t

⇒ x1 ∼ t1/2(ln t)−1/2

x , r11
x , r2 2

h

x , r

h*
h1

l

.

Distinguish ln t from t1/5 in experiments??
Si/SiO2 Leroy et al x ∼ t1/3 ??
Metal GH Kim et al x ∼ t2/5.

OPL, A. Chame, Y. Saito, PRL 2009
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Dynamics of solid wetting Dewetting dynamics

SOS KMC model

KMC simulations SOS Hopping rates
A/S: rn = ν0 e−nJ/T +ES/T

A/A: νn = ν0 e−nJ/T

J bong energy; ES substrate contact energy

r2

ν4

4r

r
r

0

3

ν

ν

ν

ν3

2

0

1

Equilibrium shape Low temperatures:

h = E
2/3
S J−2/3N1/3; h/L = ES/J

ES = 1, N = 900, → h = 8.7, simul at T/J = 0.35

Link T → O:

γ(0) = J/2

S = −ES

Olivier Pierre-Louis (ILM-Lyon, France) Lecture 2: Wetting and dewetting of solids and liquids 28th May 2017 44 / 110



Dynamics of solid wetting Dewetting dynamics

SOS KMC model

KMC simulations SOS Hopping rates
A/S: rn = ν0 e−nJ/T +ES/T

A/A: νn = ν0 e−nJ/T

J bong energy; ES substrate contact energy

r2

ν4

4r

r
r

0

3

ν

ν

ν

ν3

2

0

1

Equilibrium shape Low temperatures:

h = E
2/3
S J−2/3N1/3; h/L = ES/J

ES = 1, N = 900, → h = 8.7, simul at T/J = 0.35

Link T → O:

γ(0) = J/2

S = −ES

Olivier Pierre-Louis (ILM-Lyon, France) Lecture 2: Wetting and dewetting of solids and liquids 28th May 2017 44 / 110



Dynamics of solid wetting Dewetting dynamics

Facetted rim

0 5×10
7

1×10
8

t

0

10

20

h 1;  
  R

1/1
0

0 2×10
7

4×10
7

t

0

5

10

15

h 1;  
  x

1/4

(a) (b)
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Dynamics of solid wetting Dewetting dynamics

Rim instability

∂t h = ∇ · [hn∇∆h]

Transversal direction y , perturbation q = 2π/λ
Assuming y ∼ x

→ q ∼
1

θR
∼

1

θ(n−1)/(5−n)h
1/(5−n)
∗ t1/(5−n)

n = 0→ λ ∼ t1/5

n = 2→ λ ∼ t1/3

n = 3→ λ ∼ t1/2

OPL 2013, Münch-Wagner 2014

Final finger wavelength? Kan, Wong J.Appl. Phys. 2005
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Dynamics of solid wetting Dewetting dynamics

10 fronts: Metastability?

KMC

0
1×10

7
2×10

7

t

0

100

200

300

x

1/2t

t

Danielson PhD Thesis, MIT 2008
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Dynamics of solid wetting Dewetting dynamics

11 fronts

h = 3, h1 = 9, T = 0.5, ES = 1.5,
Danielson PhD Thesis, MIT 2008

700 800 900
700

800

900
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Dynamics of solid wetting Dewetting dynamics

Instability of a facetted rim: Linear Coarsening

Instability on a - non-steady-state:

(110) -rough orientation γ̃1 ≈ γ constant
Coarsening: λ ∼ t1/4(ln t)−1/2

Numerical power-law fit λ ∼ t0.2

(100) -vertical (100) facet
γ̃1 = Ta/β2 ≈ (T/2a)eγh1/T /h1

Stable

700 800 900
700

800

900

Substrate Rim Film

x (y,t)1
x (y,t)2

x

z
y
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1010
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t

x 1
(1

)q
(t

)
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t
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M. Dufay, OPL, PRL 2011
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Dynamics of solid wetting Dewetting dynamics

KMC vs SOI

h = 3, ES = 1, T = 0.5

SOI system LEEM Experiments:
E. Bussman, F. Leroy, F. Cheynis, P. Müller, OPL NJP(2011)
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Dynamics of solid wetting Dewetting dynamics

Isotropic

More or less isotropic?
Müller et al LP2MC Marseille

Berbezier et al LP2MC Marseille
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Dynamics of solid wetting Dewetting dynamics

Dendritic shapes

More or less dendritic shapes?
Müller et al LP2MC Marseille
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Dynamics of solid wetting Dewetting dynamics

Dewetting hole of shapes NNN KMC

Seaweed
Isotropic
Example: dirty SOI??

Anisotropic Ramified
Simple 4-fold
Example: SOI

Dendritic
4-fold with secondary facet
Example: GOI

.
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Dynamics of solid wetting Dewetting dynamics

Dewetting of a complete film / Hole nucleation and growth

h = 3, ES = 0.7, T = 0.5

0

9

6

3

.
12

15(a)

10
3

10
4

10
5

10
6

10
7

t

10
-4

10
-2

10
0

θ

(b)

hole radius R ∼ t1/2

hole area A ∼ R2 ∼ t
uncoverage θ ∼ t2

Burhanudin et al Surf. Sci 2006
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Dynamics of solid wetting Surface diffusion model with wetting potential

1 Static Wetting of liquids and Solids
Introduction
Wulff-Kaishew construction
Thin Films
Elastic effects

2 Dynamics of solid wetting
Dewetting dynamics
Surface diffusion model with wetting potential
Derivation of the TL Boundary Condition
Spinodal dewetting and Accelerated mass shedding
Elastic dewetting /ATG
KMC study of magic heights

Dewetting without a rim
Non-conservation of the mass: evaporation and reaction

3 Islands on nano-patterns
Patterns larger than islands
Patterns smaller than islands
Islands on nano-pillars
Solid imbibition in nano-pillars

4 Conclusions
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Dynamics of solid wetting Surface diffusion model with wetting potential

Continuum model with Wetting potential

Substrate at h = 0
Free energy per unit area :

γ(h) = γ∞ +W(h)

Wetting potential W(h)→ 0 as h→∞

µ(x) = −γ∞∂xx h + γ′(h)

j = −M(h)∇µ
∂t h = −∇ · j

Far from the substrate: h→∞
M(h)→M∞
γ(h)→ γ∞

x

h(x,t)

j
h0

0.0 0.5 1.0 1.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

h

γ
(h
)
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Dynamics of solid wetting Derivation of the TL Boundary Condition

1 Static Wetting of liquids and Solids
Introduction
Wulff-Kaishew construction
Thin Films
Elastic effects

2 Dynamics of solid wetting
Dewetting dynamics
Surface diffusion model with wetting potential
Derivation of the TL Boundary Condition
Spinodal dewetting and Accelerated mass shedding
Elastic dewetting /ATG
KMC study of magic heights

Dewetting without a rim
Non-conservation of the mass: evaporation and reaction

3 Islands on nano-patterns
Patterns larger than islands
Patterns smaller than islands
Islands on nano-pillars
Solid imbibition in nano-pillars

4 Conclusions
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Non-equilibrium boundary condition

Equilibrium condition at Triple Line
Young-Dupré
γ cos θeq + γint = γsub

θ0

s

θ

S

A
V

Liquids
P.G. de Gennes
Grain Boundaries
U. Czubayko et al, Acta Mater. (1998); M. Upmanyu et al Acta Mater. (2002).
Solid-state wetting
Wang, Jiang, Bao, Srolovitz (2015)

v = K(cos θ − cos θeq)

Microscopic origin of the kinetic coefficients:

Wetting potential?

Microscopic Kinetic coefficients affected by the vicinity of substrate?

Is this the correct triple line BC?
Derive K from mesoscopic model?
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Matched asymptotic Expansion

Expand in small parameter ε ∼ h0

x∼1
h∼ϵ

Substrate

h∼ϵ
x∼ϵ

Triple Line

x∼1 h∼1
Film

x

h

h0

0.0 0.5 1.0 1.5
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

h

γ
(h
)

(a) Film region

{
h ∼ O(1)

x ∼ O(1)

(b) TL region

{
h = εH(X , t)

x = xTL + εX

(c) Substrate region

{
h(x , t) = εH(χ, t)

χ = x
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Dynamics of solid wetting Derivation of the TL Boundary Condition
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Kinetic Boundary Conditions

To 0th order, Young & no-flux

θ = θeq
γ∞

2
θ2

eq = γ∞ − γmin J = 0

... To 3rd order, KBC (Linear / Onsager)

L
[

v
J

]
=

[
[U]
−[µ]

]

Local Thermodynamic Potentials :

U = − γ∞
2

(∂x h)2 + γ(h).

µ = −γ∞∂xx h + γ′(h),

Thermodynamic Forces :

[U] = (U+ − U−) = γ∞(cos θ − cos θeq)

[µ] = (µ+ − µ−) ∝ γ∞κ− hγ′′min

Thermodynamic Fluxes :
v : velocity of triple line
J : mass flux through triple line

Kinetic Coefficients :

L =

[
L2v L1v

L1v L1J

]
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Kinetic Coefficients

L
[

v
J

]
=

[
[U]
−[µ]

]
Kinetic coefficients

L1J =

∫ ∞
−∞

dX

(
1

M(H0)
−

Θ(X )

M(∞)
−

Θ(−X )

M(0)

)
∼

ε

M

L1v =

∫ ∞
−∞

dX

(
H0

M(H0)
−Θ(X )

X∂x h0(xTL)

M(∞)

)
∼
ε2

M

L2v =

∫ ∞
−∞

dX

[
H2

0

M(H0)
−

Θ(X )

M(∞)
(X∂x h0(xTL))2

]
∼
ε3

M

In most cases θ ∼ θeq ?
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Numerical simulations

Wetting potential
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case 1 constant mobility
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case 3 asymmetric: lower mobility in the substrate
case4 asymmetric: lower mobility in the film

Case 1

Case 2

Case 3

Case 4

0.0

0.2

0.4

0.6

0.8

1.0

m
(h
)

-0.1 0.1 0.3 0.5 0.7 0.9

h

Olivier Pierre-Louis (ILM-Lyon, France) Lecture 2: Wetting and dewetting of solids and liquids 28th May 2017 62 / 110



Dynamics of solid wetting Derivation of the TL Boundary Condition

Numerical simulations
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Numerical simulations

hc+α

hc-α

FitS

h

x

xTL
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Numerical simulations

Dynamic contact angle θD

η =
θeq − θD

θeq

Dewetting dynamics
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Dynamics of solid wetting Derivation of the TL Boundary Condition

Summary on Kinetic Boundary Condition

2 Kinetic Boundary Conditions for v and J

Numerical validation

Convergence of kinetic coefficients.
W (h)−W (∞) ∼ h−n, with n > 3
M(h)−M(∞) ∼ h−m, with m > 3
Van der Waals n = 2 ??
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Dynamics of solid wetting Spinodal dewetting and Accelerated mass shedding

1 Static Wetting of liquids and Solids
Introduction
Wulff-Kaishew construction
Thin Films
Elastic effects

2 Dynamics of solid wetting
Dewetting dynamics
Surface diffusion model with wetting potential
Derivation of the TL Boundary Condition
Spinodal dewetting and Accelerated mass shedding
Elastic dewetting /ATG
KMC study of magic heights

Dewetting without a rim
Non-conservation of the mass: evaporation and reaction

3 Islands on nano-patterns
Patterns larger than islands
Patterns smaller than islands
Islands on nano-pillars
Solid imbibition in nano-pillars

4 Conclusions
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Dynamics of solid wetting Spinodal dewetting and Accelerated mass shedding

Small thicknesses: spinodal dewetting

Linear stability analysis : h = h̄ + δh
δh ∼ eiωt+iqx

iω =M(h̄) q2[−γ∞q2 + W ′′(h̄)]

Spinodal Instablility if W ′′(h̄) ≤ 0

λLS =
23/2πγ̄1/2

W ′′(h̄)1/2

TLS =
4γ̄

M̄W ′′(h̄)2

h

hδ

.

Liquids

Becker, Grün, Seemann, Mantz, Jacobs, Mecke and Blossey, Nat. Mater. (2003)
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Dynamics of solid wetting Spinodal dewetting and Accelerated mass shedding

Embedded Animation

Aswani Tripathi, ILM-Lyon
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Dynamics of solid wetting Spinodal dewetting and Accelerated mass shedding

Mass Shedding

Periodic Mass shedding
θ0 = 60o and h0 = 0.1
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Dynamics of solid wetting Spinodal dewetting and Accelerated mass shedding

Small thicknesses: spinodal dewetting

Linear stability analysis : h = h̄ + δh
Spinodal Instablility if W ′′(h̄) ≤ 0

T WV
c =

h̄4

M̄γ̄θ4
0

TLS =
4γ̄

M̄W ′′(h̄)2 ●
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Dynamics of solid wetting Elastic dewetting /ATG
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Dynamics of solid wetting Elastic dewetting /ATG

Continuum model with Wetting potential

Substrate at h = 0
Free energy per unit area :

γ(h) = γ∞ +W(h)+Eel

µ(x) = −γ∞∂xx h + γ′(h)+Cε2
0H(∂x h)

j = −M∇µ
∂t h = −∇ · j

H[∂x h] = F−1{|q|F [h]}

x

h(x,t)

j

Schifani, Frisch, Argentina, Aqua, PRE 20016
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Dynamics of solid wetting Elastic dewetting /ATG

Continuum model with Wetting potential

Stabilizing exponential W (h) and Anisotropy

Aqua, Gouye, Ronda, Frisch, Berbezier, PRL 2013
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Dynamics of solid wetting KMC study of magic heights
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Dynamics of solid wetting KMC study of magic heights

Electronic Quantum confinement

Free electron model

WEC (h) ≈ −
Efb

(h + 2b)2

π

36
√

3
cos(2kfbh)

Efb, kfb Fermi energy and wavevect,
b = 3πkfb/8

(b)

(c) (d)

(a)

(a) Al(111) (purple squares), Ag(111) (blue circles)
(c) Al(111) ,(d) Ag(111) blue-Stable, red-Unstable
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Dynamics of solid wetting KMC study of magic heights

Magic heights and labyrinthine patterns

Metals/ semicon or insulator: Electronic confinement → Magic thickness
Z. Zhang et al, Phys.Rev.Lett.1998,1999

Experiments Ag/Si(111)
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Dynamics of solid wetting KMC study of magic heights

SOS KMC model with magic height

KMC simulations SOS

z 6= 1 and z 6= h∗ νn = ν e−(nJ+J0)/T

z = 1 rn = ν e−(nJ+J0−ES )/T

z = h∗ r∗n = ν e−(nJ+J0−E∗)/T

r2

ν4

4r

r
r

0

3

ν

ν

ν

ν3

2

0

1
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Dynamics of solid wetting KMC study of magic heights

KMC simualtions with magic height

A. Chame, OPL, Phys Rev B 2014

λ ∼ 30nm
Semi-quantitative agreement with experiments
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Dynamics of solid wetting KMC study of magic heights

Magic-height rim

800× 800, T = 0.4, h = 3, ES = 0.4, h∗ = 7, E = −0.5
Induced nucleation and incomplete closure
A. Chame, OPL, Phys Rev B 2014
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Dynamics of solid wetting Dewetting without a rim
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Dynamics of solid wetting Dewetting without a rim

Monolayer → no rim

Vzip ∼ Vfront

OPL, A. Chame, Y. Saito, PRL 2007

P. Maas et al, PRL 2011
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Dynamics of solid wetting Non-conservation of the mass: evaporation and reaction
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Dynamics of solid wetting Non-conservation of the mass: evaporation and reaction

Dewetting with substrate mediated evaporation

Constant velocity

Non-monotonous rim
width

(100)

y

x

(010)

0 2×10
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A. Chame, OPL, PRE 2013
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Dynamics of solid wetting Non-conservation of the mass: evaporation and reaction

Interface Reaction in SOI systems: substrate profile

Experiments

Sudoh, Naito, JAP 2010.

(2µm×2µm, 1050◦).

Kinetic Monte Carlo
Interface: Si+SiO2 ↔2Si+2O
Interface: O diffusion
Triple Line: Si+O→ SiO(evap)
Si Surface: Si diffusion

νO = 10/τA, νE = 0.01/τA.

νO = 10/τA, νE = 0.1/τA.

Analytic
Reaction-Diffusion

∂t CO = D∂xx CO + K0 − K1C 2
O

∂t hI = K0 − K1C 2
O

θTL = θeq

h = −π
D

1/2
O K

3/4
0

21/2K
1/4
1

cosh
x

xs

∫ x/xs

R0/xs

udu

sinh u

OPL, P. Müller et al PRB (2014), APL (2015)
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Dynamics of solid wetting Non-conservation of the mass: evaporation and reaction

Interface Reaction: running droplets

Running sild-clusers Sn/Cu(111)

LEEM, 1.5µm, 290K

Bronze

Sn Cu

Schmid, Bartelt, Hwang, Science Reports (2000).

Liquid Running oil Droplet

Sumino, Magome, Hamada, Yshikawa PRL2005
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Islands on nano-patterns Patterns larger than islands
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Islands on nano-patterns Patterns larger than islands

Guided Self-Organisation vs Healing
.

.

S

V

A

Healing length

ξheal =

(
γ(h̄)

W ′′(h̄)

)1/2

Guided self-organization

ξheal =

(
γ(h̄)

−W ′′(h̄)

)1/2

Ge/Si, 5× 5µm
Zhong et al PRL 2007

Aqua and Xu PRE 2014

Au/Si
C.V. Thompson
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Islands on nano-patterns Patterns larger than islands

Guided Self-Organisation: Drift Experiments

Controlled positionning of mass in holes
Ling et al Surf. Sci 2006

McCarty NanoLetters 2006 Ag/W(110)
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Islands on nano-patterns Patterns larger than islands

Nucleationless motion

Going back to equilibrium height
without nucleation on top??

island position ∼ t1/4

M. Dufay, OPL, Phys Rev B, 2010
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Islands on nano-patterns Patterns smaller than islands

1 Static Wetting of liquids and Solids
Introduction
Wulff-Kaishew construction
Thin Films
Elastic effects

2 Dynamics of solid wetting
Dewetting dynamics
Surface diffusion model with wetting potential
Derivation of the TL Boundary Condition
Spinodal dewetting and Accelerated mass shedding
Elastic dewetting /ATG
KMC study of magic heights

Dewetting without a rim
Non-conservation of the mass: evaporation and reaction

3 Islands on nano-patterns
Patterns larger than islands
Patterns smaller than islands
Islands on nano-pillars
Solid imbibition in nano-pillars

4 Conclusions

Olivier Pierre-Louis (ILM-Lyon, France) Lecture 2: Wetting and dewetting of solids and liquids 28th May 2017 91 / 110



Islands on nano-patterns Patterns smaller than islands

Three wetting states for liquids on patterns

Cassie-Baxter Wenzel Imbibition

χ

Wettability: χ = (1 + cos θ0)/2

Bico, Marzolin, Quéré (1999)

Watson et al PLoS ONE (2011)
Seemanet al (2005)

Polystyrene drops on Silicon
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Islands on nano-patterns Patterns smaller than islands

3D KMC Model

3D KMC
Hopping along the surface

ν = ν0 e
−(n1J1+n2J2+ns1Js1+ns2Js2)/T

J bond energy, ni nb neighbors
i = 1, 2 NN, NNN adsrobate
i = s1, s2 NN, NNN substrate
Moves to NN
Allowed when there is NN or NNN

Shape controlled by

ζ =
J2

J1
=

Js2

Js1

Wetting controlled by

χ =
Js1

J1

Link T → O:

1− χ =
−S

2γ(0)

χ→ 0: Complete de-wetting
χ→ 1: Complete Wetting
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Islands on nano-patterns Patterns smaller than islands

ψ parameter

Contact angle not a good parameter for facetted crystals!

ψ =
SAV

SAS

3D Isotropic crystal γ(θ) = γ̄

χ =
1

2
(1 + cos θ0) =

1

2

(
1 +

γSV − γAS

γ̄

)

ψ =
1

χ

3D Square crystal γ0

χ =
1

2

(
1 +

γSV − γAS

γ0

)

ψ = 5− 4χ

0.2 0.4 0.6 0.8 1.0
Χ

2

3

4

Ψ

χ→ 0: Complete de-wetting
χ→ 1: Complete Wetting (ψ = 1)
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Islands on nano-patterns Patterns smaller than islands

Wetting on a flat substrate

Wetting control parameter

χ =
Js1

J1

Cube ζ = 0

ψ = 5− 4χ

KMC:
N = 11025, ζ = 0.2, χ = 0.4, T/J1 = 0.5
Error: Energy 1%; ψ 3%.
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Islands on nano-patterns Patterns smaller than islands

Parallel nano-grooves

λ

λ/2 λ/2

N = 104

λ = 20
ζ = 0.2
χ = 0.4
T/J1 = 0.5
Parallel grooves:
Cassie-Baxter state (CB)
Wenzel state (W)
Capillary filling (CF)

W CB

CF

x

y
z
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Islands on nano-patterns Patterns smaller than islands

ψ

Wetting parameter

ψ =
SAV

SAS

neglecting (110) and (111)

ψCB = 7− 2χ

ψW = 2− 2χ

ψCF =
1

3
+

1

12v
.

v = Na3/λ3

W CB

CF

x

y
z

0.0 0.2 0.4 0.6 0.8 1.0
Χ

1.0

0.5

2.0

5.0

Ψ

HaL

CB W CF
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Islands on nano-patterns Patterns smaller than islands

Hystersis/Stability

Instability thresholds

χCB→W =
1

2
.

χW→CB =
1

3
−

1

36v

[
1 + (1 + 30v)1/2

]
,

χW→CF =
2

3
−

1

36v

[
1 + (1 + 6v)1/2

]
,

χCF↓ = 1−
1

8v

χCF↑ =
1

3
−

1

24v

Finite temperature effects CF →W

c

x
z

λ/2

λ/2

h

d

(a) CB (b) W (c) CF

(d) (e) (f) (g)

h
~

l

h

h*

.

y
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Islands on nano-patterns Patterns smaller than islands

Migration-induced switching

Nanoswitch controlled by an electron beam
KMC wih imposed migration

M. Ignacio, OPL, PRE (2015)

Olivier Pierre-Louis (ILM-Lyon, France) Lecture 2: Wetting and dewetting of solids and liquids 28th May 2017 99 / 110



Islands on nano-patterns Patterns smaller than islands

Migration-induced switching

Phase diagram F̄ = FN/(γ100λ)
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Islands on nano-patterns Patterns smaller than islands

Migration-induced switching

Phase diagram F̄ = FN/(γ100λ)
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Islands on nano-patterns Islands on nano-pillars
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Islands on nano-patterns Islands on nano-pillars

Nanocrystals in Cassie-Baxter state

Growth of GaN on Si nano-pillars
Hersee et al J.A.P. 2005

Zang et al, APL 2006

Avoiding dislocations?

Growing without collapse?

Stability?

χ = 0.390, χ = 0.405
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Islands on nano-patterns Islands on nano-pillars
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Islands on nano-patterns Islands on nano-pillars

Elastic islands on nano-pillars

3D KMC with elastic effects

Extended stability

Asymmetric CB state

Partially collapsed state

M. Ignacio, Y. Saito, P. Smereka, OPL, PRL 2014
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Islands on nano-patterns Solid imbibition in nano-pillars
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Islands on nano-patterns Solid imbibition in nano-pillars

Imbibition criterion
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Islands on nano-patterns Solid imbibition in nano-pillars

Diffusion-limited spreading

χ = 0.8, `x = 6, h = 3, `p = 4

L ∼ t1/2, and A ∼ t with log corrections
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P. Gaillard, Y. Saito, OPL, Phys Rev Lett 2011
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Islands on nano-patterns Solid imbibition in nano-pillars

Nucleation-limited imbibition front motion

χ = 0.8, `x = 6, h = 3, `p = 2
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P. Gaillard, Y. Saito, OPL, Phys Rev Lett 2011
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Conclusions

Summary

Equilibrium and stability of isands and films

Deweting of solid films: Rim facetting, Instability Coarsening and Ansitotropy

Islands on nano-patterns: Multi-stability / Collapse / Elasticity

Wetting of reactive islands

Other related issues and Perspectives

Reactive wetting and nanowire growth

Surface melting

Non-equilibrium TL condition

Link to complex fluids (polymers, etc)

... nucleation and growth
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